ANALYTICAL EXAMINATION OF NANO-FLUID-ASSISTED COOLING RATE ENHANCEMENT IN A CAR RADIATOR

Authors

DOI:

https://doi.org/10.46545/aijser.v6i1.310

Keywords:

Nanofluid, Radiator, Vehicle, Heat Transfer, Radiator.

Abstract

In recent years, nanofluids have been extensively utilized to improve heat transmission in various mediums. The use of nanofluids can enhance the thermal efficiency of thermosyphons. This study focuses on analyzing the thermal efficiency of automobile radiators by utilizing three different types of nanofluids. In this study, we conducted a thermal performance analysis of a car radiator by examining the effects of three different types of nanoparticles mixed with water: CuO-water, ZnO-water, and MgO-water nanofluids. The thermal performance of these three nanofluids was compared and analyzed. The experimental setup included a radiator with a hydraulic diameter of 0.0191 m and a total length of the radiator channel of 10.5354 m. The analyses are conducted at different volume fractions, ranging from 0.5% to 3%, and a constant inlet velocity of 0.24 m/s is maintained. The findings demonstrated a substantial enhancement in thermal efficiency when employing CuO-water nanofluid as a coolant for vehicle engine cooling in the radiator. Conversely, ZnO-water and MgO-water nanofluids exhibited very limited improvements in comparison to pure water. The thermal conductivity of CuO-water nanofluid is greater than that of pure water. The CuO-water nanofluid yields the most significant enhancements in terms of the mass flow rate and heat transfer coefficient, as revealed by this investigation. Hence, it is advisable to utilize CuO-water nanofluid in automobile radiators to achieve optimal heat transfer efficiency in comparison to the base fluid.

 JEL Classification Codes: O31, O32, Q40.

Downloads

Download data is not yet available.

References

Abbas, C. A., Huang, C., Wang, J., Wang, Z., Liu, H., & Zhu, H. (2020). Machinability investigations on high-speed drilling of aluminum reinforced with silicon carbide metal matrix composites. The International Journal of Advanced Manufacturing Technology, 108, 1601-1611. https://doi.org/10.1007/s00170-020-05409-4

Chatha, S. S., Pal, A., & Singh, T. (2016). Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. Journal of Cleaner Production, 137, 537-545. https://doi.org/10.1016/j.jclepro.2016.07.139

Ding, Y., Chen, H., He, Y., Lapkin, A., Yeganeh, M., Šiller, L., & Butenko, Y. V. (2007). Forced convective heat transfer of nanofluids. Advanced Powder Technology, 18(6), 813-824. https://doi.org/10.1163/156855207782515021

Duangthongsuk, W., & Wongwises, S. (2010). An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. International journal of heat and mass transfer, 53(1-3), 334-344. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.024

Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters, 78(6), 718-720. https://doi.org/10.1063/1.1341218

Heris, S. Z., Esfahany, M. N., & Etemad, S. G. (2007). Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International journal of heat and fluid flow, 28(2), 203-210. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001

Hwang, Y. J., Lee, J. K., Lee, C. H., Jung, Y. M., Cheong, S. I., Lee, C. G., Ku, B.C. & Jang, S. P. (2007). Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta, 455(1-2), 70-74. https://doi.org/10.1016/j.tca.2006.11.036

Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (1996). Fundamentals of heat and mass transfer (Vol. 6, p. 116). New York: Wiley. http://www.mid-contracting.com/sites/default/files/webform/careers_webform/_sid_/pdf-fundamentals-of-heat-and-mass-transfer-frank-p-incropera-david-p-dewitt-pdf-download-free-book-7841c05.pdf

Kays, W. M., & London, A. L. (1984). Compact heat exchangers. https://www.osti.gov/biblio/6132549

Khan, A. M., Gupta, M. K., Hegab, H., Jamil, M., Mia, M., He, N., Song, Q., Liu, Z., & Pruncu, C. I. (2020). Energy-based cost integrated modelling and sustainability assessment of Al-GnP hybrid nanofluid assisted turning of AISI52100 steel. Journal of Cleaner Production, 257, 120502. https://doi.org/10.1016/j.jclepro.2020.120502

Kim, D., Kwon, Y., Cho, Y., Li, C., Cheong, S., Hwang, Y., Lee, J., Hong, D., & Moon, S. (2009). Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Current Applied Physics, 9(2), e119-e123. https://doi.org/10.1016/j.cap.2008.12.047

Ko, G. H., Heo, K., Lee, K., Kim, D. S., Kim, C., Sohn, Y., & Choi, M. (2007). An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube. International journal of heat and mass transfer, 50(23-24), 4749-4753.https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.029

Kulkarni, D. P., Vajjha, R. S., Das, D. K., & Oliva, D. (2008). Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Applied Thermal Engineering, 28(14-15), 1774-1781. https://doi.org/10.1016/j.applthermaleng.2007.11.017

Lee, J. H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U., & Choi, C. J. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11-12), 2651-2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026

Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International journal of thermal sciences, 48(2), 363-371. https://doi.org/10.1016/j.ijthermalsci.2008.03.009

Namburu, P. K., Das, D. K., Tanguturi, K. M., & Vajjha, R. S. (2009). Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. International journal of thermal sciences, 48(2), 290-302. https://doi.org/10.1016/j.ijthermalsci.2008.01.001

Subhedar, D. G., Ramani, B. M., & Gupta, A. (2018). Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant. Case studies in thermal engineering, 11, 26-34. https://doi.org/10.1016/j.csite.2017.11.009

Vasu, V., Rama Krishna, K., & Kumar, A. C. S. (2008). Thermal design analysis of compact heat exchanger using nanofluids. International Journal of Nanomanufacturing, 2(3), 271-288. https://doi.org/10.1504/IJNM.2008.018949

Yu, W., France, D. M., Choi, S. U., & Routbort, J. L. (2007). Review and assessment of nanofluid technology for transportation and other applications (No. ANL/ESD/07-9). Argonne National Lab.(ANL), Argonne, IL (United States). https://doi.org/10.2172/919327

Yu, W., France, D. M., Smith, D. S., Singh, D., Timofeeva, E. V., & Routbort, J. L. (2009). Heat transfer to a silicon carbide/water nanofluid. International Journal of Heat and Mass Transfer, 52(15-16), 3606-3612. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.036

Downloads

Published

2023-12-30

Issue

Section

Original Articles/Review Articles/Case Reports/Short Communications

How to Cite

Khan , M. S. A. . (2023). ANALYTICAL EXAMINATION OF NANO-FLUID-ASSISTED COOLING RATE ENHANCEMENT IN A CAR RADIATOR . American International Journal of Sciences and Engineering Research , 6(1), 1-14. https://doi.org/10.46545/aijser.v6i1.310